C₂H₇O⁺ Potential Surface and Ion-Molecule Association between H₃O⁺ and C₂H₄

David A. Fairley, Graham B. I. Scott, Colin G. Freeman, Robert G. A. R. Maclagan, and Murray J. McEwan*

Department of Chemistry, University of Canterbury, Christchurch, New Zealand Received: October 22, 1996; In Final Form: January 30, 1997[®]

The $C_2H_7O^+$ potential surface has been explored using the G2 procedure. Four stable structures were identified: protonated ethanol, $C_2H_5OH_2^+$, protonated dimethyl ether, $(CH_3)_2OH^+$, and the electrostatic complexes $C_2H_4\cdots H\cdots OH_2^+$ and $CH_3^+\cdots HOCH_3$. Experiments conducted using a selected ion flow tube identify the $H_3O^+\cdot C_2H_4$ product of the ion-molecule association reaction $H_3O^+ + C_2H_4$ as $C_2H_5OH_2^+$, protonated ethanol. Rate coefficients and branching ratios are reported for reactions of the $C_2H_7O^+$ ions- $H_3O^+\cdot C_2H_4$ formed in the reaction of $H_3O^+ + C_2H_4$, $C_2H_5OH_2^+$, and $(CH_3)_2OH^+$ -with acrylonitrile and 2-fluorotoluene.

Introduction

Ethanol is one of the molecules observed in interstellar clouds, and although it is not found in cold, dark clouds, it is present in appreciable abundances in regions where stars are formed.^{1–3} Model calculations have used a variety of reactions, both gas phase and heterogeneous reactions on grain surfaces, as sources of C₂H₅OH in the interstellar medium.^{3–5} Among the gas phase reactions considered in the models are the following ion–molecule association reactions:

$$CH_3^+ + CH_3OH \rightarrow (CH_3)_2OH^+ + h\nu$$
 (1a)

$$\rightarrow C_2 H_5 O H_2^+ + h\nu \qquad (1b)$$

$$H_{3}O^{+} + C_{2}H_{4} \rightarrow C_{2}H_{5}OH_{2}^{+} + h\nu$$
 (2)

 C_2H_5OH has been assumed in the models to be formed from $C_2H_5OH_2^+$ in a dissociative recombination reaction.

$$C_2H_5OH_2^+ + e \rightarrow C_2H_5OH + H$$
(3)

Several stable isomers of $C_2H_7O^+$ are possible, and it is not certain which isomeric species or mixture of species might be produced from an ion-molecule association process. Likely stable isomers of association reactions coincide with valleys on the $C_2H_7O^+$ potential surface and include $C_2H_5OH_2^+$ (protonated ethanol), $(CH_3)_2OH^+$ (protonated dimethyl ether), $C_2H_4\cdots H\cdots$ OH_2^+ , and $CH_3^+\cdots HOCH_3$ (electrostatic-type complexes). Jarrold *et al.*⁶ examined the collision-induced dissociation (CID) spectra of $C_2H_5OH_2^+$ and $(CH_3)_2OH^+$ and concluded that the association product of reaction 1 has predominantly the $(CH_3)_2$ - OH^+ structure while the product of reaction 2 has mainly the $C_2H_5OH_2^+$ structure.

In this study we have probed the structure of the $C_2H_7O^+$ ion formed in the termolecular analogue of reaction 2 by examining its proton transfer reactions using a selected ion flow tube (SIFT) with the neutral reagents 2-fluorotoluene and acrylonitrile. The technique has been used previously to probe the structures of several other products of ion-molecule association.^{7,8} We have also undertaken ab initio calculations of the $C_2H_7O^+$ energy surface to assist in the interpretation of our experiments.

Experimental Section

The experiments reported here were carried out using the SIFT at Canterbury University operating at room temperature (300 \pm 5) K as described previously.⁹ The C₂H₇O⁺ ions examined in this work were produced in the following ways. The product ion of the association reaction 4b, which we designate H₃O⁺·C₂H₄, was formed in the flow tube by injecting H₃O⁺ into a stream of C₂H₄ introduced at the first inlet port.

$$H_{3}O^{+} + C_{2}H_{4} \rightarrow C_{2}H_{5}^{+} + H_{2}O$$
 (4a)

$$\xrightarrow{\mathrm{M}} \mathrm{H}_{3}\mathrm{O}^{+} \cdot \mathrm{C}_{2}\mathrm{H}_{4}$$
 (4b)

Sufficient C₂H₄ was added to remove >99% of the H₃O⁺ ion signal. In the process, C₂H₅⁺ produced in reaction 4a was completely converted into predominantly (C₂H₄)₂H⁺ and C₅H₉⁺, neither of which reacted further with 2-fluorotoluene and CH₂-CHCN.

The products of reaction 4 were first established by Bohme and Mackay¹⁰ and also by McIntosh *et al.*¹¹ Our measurement of the rate coefficient for the reaction ($k = 8.4 \times 10^{-11}$ cm³ s⁻¹) and of the branching ratio (H₃O⁺·C₂H₄ = 30%) at 0.35 Torr of helium is in reasonable agreement with the earlier measurements when allowance is made for the different bath gas pressures between different experiments. (McIntosh *et al.*¹¹ report a rate coefficient of 1×10^{-10} cm³ s⁻¹ with a branching ratio of 60% adduct at a helium pressure of 0.45 Torr.) Our measurement is also in excellent agreement with that given in the accompanying paper by Matthews *et al.* of $k = 7.8 \times 10^{-11}$ cm³ s⁻¹.¹²

The $C_2H_5OH_2^+$ ion was generated in the ion source by initial electron impact on C_2H_5OH , followed by H atom abstraction (reaction 5).

$$C_2H_5OH^+ + C_2H_5OH \rightarrow C_2H_5OH_2^+ + C_2H_5O$$
 (5)

Alternatively $C_2H_5OH_2^+$ was formed in the flow tube by injecting H_2CN^+ into the helium carrier gas and adding C_2H_5 -OH at the first neutral inlet. This prevents any breakup from $C_2H_5OH_2^+$ that occurs during the injection process. A similar technique was used to produce the $(CH_3)_2OH^+$ ion by subjecting

[®] Abstract published in Advance ACS Abstracts, March 15, 1997.

C₂H₇O⁺ Potential Surface

 $(CH_3)_2O$ to electron impact in the ion source and, after mass selection, injecting $(CH_3)_2OH^+$ into the flow tube.

All reagents were obtained from commercial sources. A trace of the radical inhibitor, 4-methoxyphenol, was added to acrylonitrile to prevent polymerization in the absence of oxygen.

Results

SIFT Experiments. We examined the reactions of three $C_2H_7O^+$ isomers $(H_3O^+ \cdot C_2H_4, C_2H_5OH_2^+, \text{ and } (CH_3)_2OH^+)$ with the reagents 2-fluorotoluene, C_7H_7F , and acrylonitrile, CH_2^- CHCN. We also examined the reaction of $H_3O^+ \cdot C_2H_4$ with CH₃OH. These three reagents were selected on the basis of their known proton affinities (PAs) which are (in kJ mol⁻¹) C_7H_7F (PA = 782); CH₂CHCN (PA = 794), and CH₃OH (PA = 761).¹³ The following results were obtained:

$$H_{3}O^{+} \cdot C_{2}H_{4} + CH_{3}OH \rightarrow adduct \quad (1.0) \qquad (6)$$

$$k = 6.9 \times 10^{-10} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

 $H_3O^+ \cdot C_2H_4 + C_7H_7F \rightarrow C_7H_8F^+ + C_2H_5OH \quad (0.65) \quad (7)$

$$\rightarrow$$
 adduct (0.35)

$$k = 5.4 \times 10^{-10} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

 $H_3O^+ \cdot C_2H_4 + CH_2CHCN \rightarrow$

$$CH_2CHCNH^+ + C_2H_5OH \quad (0.40) \quad (8)$$

$$\rightarrow$$
 adduct (0.60)

$$k = 3.2 \times 10^{-9} \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

$$C_2H_5OH_2^+ + C_7H_7F \rightarrow C_7H_8F^+ + C_2H_5OH \quad (\sim 0.70) \quad (9)$$

→ adduct (~0.30)
=
$$4.3 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$$

 $C_2H_5OH_2^+ + CH_2CHCN \rightarrow$

k

$$CH_2CHCNH^+ + C_2H_5OH (0.50) (10)$$

→ adduct (0.50)

$$k = 3.2 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$$

(CH₃)₂OH⁺ + C₇H₇F → adduct (1.0) (11)
 $k = 1.9 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$

$$(CH_3)_2OH^+ + CH_2CHCN \rightarrow adduct$$
 (1.0) (12)

$$k = 2.3 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$$

Branching ratios for the product channels are shown in parentheses following the stated channel, and the rate coefficients for each reaction are also given. Although the rate coefficients for adduct formation are presented as simple bimolecular processes, the adducts are undoubtedly formed via collisional stabilization of the $(AB^+)^*$ complex. The rate coefficient for adduct formation may therefore exhibit some sensitivity to pressure, although the rate coefficients observed in most of the reactions 6-12 suggest that collisional stabiliza-

Figure 1. MP2/6-31G^{*} optimized geometries for the designated $C_2H_7O^+$ species with bond lengths in Å and bond angles in deg.

tion is approaching the pressure-saturation regime at our operating pressure of 0.35 Torr of helium bath gas.

We have presented the neutral products of $H_3O^+ \cdot C_2H_4$ in reactions 7 and 8 as C_2H_5OH rather than $H_2O + C_2H_4$. Evidence presented in the Discussion section will show that the C_2H_5OH representation of the neutral product is a likely outcome in these two reactions.

A summary of the experimental results is presented in Table 1.

Ab Initio Studies. Two isomers of C₂H₇O⁺, protonated ethanol, C₂H₅OH₂⁺, and protonated dimethyl ether, (CH₃)₂OH⁺, have been well characterized and identified experimentally as distinct isomeric species that retain their identifies under a wide range of conditions. Their enthalpies of formation have been determined.¹³ Bouchoux and Hoppilliard in an ab initio study¹⁵ characterized an electrostatic complex C₂H₄···H···OH₂⁺ that is readily accessible from C₂H₅OH₂⁺. Recently Audier et al.¹⁶ also identified an electrostatic complex CH3+...HOCH3 formed from the association of CH₃⁺ and CH₃OH, which they predicted to be separated by a small potential barrier from $(CH_3)_2OH^+$. In our calculations we identified four stable C₂H₇O⁺ structures corresponding to minima on the potential energy surface using the G2 procedure.^{17,18} These structures, in order of decreasing stability are: protonated ethanol, protonated dimethyl ether, and electrostatic complexes C₂H₄····H···OH₂⁺, and CH₃⁺···HOCH₃. Our calculations of the $C_2H_7O^+$ potential surface are the first extended calculations of this surface at the G2 level of theory.

Formation of the $H_3O^+ \cdot C_2H_4$ electrostatic π complex involves approach of the oxygen atom of H_3O^+ toward the midpoint of the C-C double bond with the formation of a hydrogen bond directed toward the center of the double bond (i.e. the most basic site). (See **1** in Figure 1.) The transition state between $H_3O^+ \cdot C_2H_4$ and $C_2H_5OH_2^+$ resembles a loose association between a classical $C_2H_5^+$ ion and a water molecule. (See **2** in

TABLE 1: Reaction Rate Coefficients and Product Ratios with the Specified Reagent for the Three $C_2H_7O^+$ Ions: $H_3O^+ C_2H_4$, Protonated Ethanol, $C_2H_5OH_2^+$, and Protonated Dimethyl Ether, $(CH_3)_2OH^+$

reactant	products	branching ratio	$k_{\rm obs} \ (10^{-9} {\rm cm}^3 {\rm s}^{-1})$	$k_{\rm coll}{}^a$ (10 ⁻⁹ cm ³ s ⁻¹)
		$H_3O^+ \cdot C_2H_4$		
CH ₃ OH	adduct	1.0	0.69	2.1
$C_7H_7F^b$	$C_7H_8F^+ + C_2H_5OH^c$	0.65	0.54	1.9
	adduct	0.35		
CH ₂ CHCN	$CH_2CHCNH^+ + C_2H_5OH^c$	0.40	3.2	3.8
	adduct	0.60		
		$C_2H_5OH_2^+$		
$C_7H_7F^b$	$C_7H_8F^+ + C_2H_5OH$	~0.70	0.43	1.9
	adduct	~ 0.30		
CH ₂ CHCN	$CH_2CHCNH^+ + C_2H_5OH$	0.50	3.2	3.8
	adduct	0.50		
		$(CH_3)_2OH^+$		
$C_7H_7F^b$	adduct	1.0	0.19	1.9
CH ₂ CHCN	adduct	1.0	2.3	3.8

^a Reference 14. ^b 2-fluorotoluene. ^c See text for discussion.

TABLE 2: Calculated Enthalpies of Formation and ProtonAffinities of C_2H_6O Isomers

	$\Delta_{\mathrm{f}} H^{\circ}$ (k.	$\Delta_{\rm f} H^{\circ} ({\rm kJ} \; {\rm mol}^{-1})$		$E_{\rm pa}/{\rm kJ}~{\rm mol}^{-1}$	
structure	calc ^a	exp^b	calc ^c	exp	
CH ₃ CH ₂ OH	-233.6	-234.7	780.4	788 ^b	
$(CH_3)_2O$	-190.2	-184.0	791.1	804^{b}	
$H_2O + C_2H_4$	-180.2	-189.5	767.5 ^d		

^{*a*} Calculated enthalpies of formation at 298 K at the G2 level of theory using $E_{G2}(C_2H_6O) - E_{G2}(H_2O) - E_{G2}(C_2H_4) = \Delta_f H^{\circ}(C_2H_6O) - \Delta_f H^{\circ}(H_2O) - \Delta_f H^{\circ}(C_2H_4)$. Substitution of $\Delta_f H^{\circ}(H_2O)$ and $\Delta_f H^{\circ}(C_2H_4)$ from ref 13 yields $\Delta_f H^{\circ}(C_2H_6O)$. ^{*b*} Experimental values are from ref 13. ^{*c*} Calculated proton affinities at 298 K at the G2 level of theory. ^{*d*} Calculated in the usual way using the equation $H_2O + C_2H_4 + H^+ \rightarrow H_3O^+ \cdot C_2H_4$.

Figure 2. $C_2H_7O^+$ energy surface calculated using the G2 procedure. The energies are expressed in kJ mol⁻¹ relative to $H_3O^+ + C_2H_4$ and are corrected to 298 K and for zero-point energy.

Figure 1.) Collision complexes with sufficient excitation energy may dissociate to $C_2H_5^+ + H_2O$ (reaction 4a): this proton transfer is calculated to be 7 kJ mol⁻¹ endothermic. Complexes below this threshold can either dissociate back to reactants or be stabilized to form $C_2H_5OH_2^+$, which lies 136 kJ mol⁻¹ below the reactants, $H_3O^+ + C_2H_4$. This mechanism supports the intuitive assumption that formation of $C_2H_5OH_2^+$ is more likely than $(CH_3)_2OH^+$ since the latter requires significantly more rearrangement.

In the reaction of CH₃⁺ with CH₃OH, an electrostatic complex is formed with the CH₃⁺ moiety attached by a H atom to the O atom of CH₃OH, with a binding energy of 75 kJ mol⁻¹. If the C–O bond distance is decreased, the energy of the system is raised until, at approximately R(C-O) = 2.6 Å, the CH₃⁺ moiety is flipped to allow bonding between the C atom of CH₃⁺ and the O atom of CH₃OH. The barrier between the

TABLE 3: G2 Energies and Relative Energies of $C_2H_7O^+$ Species at 298 K

		$\Delta E(G2)^a$	$\Delta_{\rm f} H^{\circ}$ (k.	$\Delta_{\rm f} H^{\circ} ({\rm kJ} {\rm mol}^{-1})$	
structure	<i>E</i> (G2)	$(kJ mol^{-1})$	calc	expt ^b	
$H_{3}O^{+} + C_{2}H_{4}$	-155.00200	0.0	657.4	642.3	
$H_3O^+ \cdot C_2H_4$	-155.03212	-79.1	563.2		
$C_2H_5OH_2^+$	-155.05385	-136.1	506.2	506.3	
TS (2)	-155.02195	-52.4			
$(CH_3)_2OH^+$	-155.04141	-103.5	538.8	544.0	
$C_2H_5^+ + H_2O$	-154.99953	6.5	669.4	660.2	
CH ₃ ⁺ •HOCH ₃	-154.94289	155.2	816.7		
$CH_3^+ + CH_3OH$	-154.91435	230.1	883.8	891.6	

^{*a*} Relative to $H_3O^+ + C_2H_4$. ^{*b*} Values from ref 13.

 $CH_3^+ \cdots HOCH_3$ electrostatic complex and $(CH_3)_2OH^+$ is about 30 kJ mol⁻¹. An experimental investigation of the $CH_3^+ + CH_3OH$ reaction is presented in the accompanying paper by Matthews *et al.*¹²

A summary of some of the ab initio results showing the calculated proton affinities of the different C_2H_6O species is given in Table 2. Smith and Radom¹⁸ have also calculated the proton affinity of (CH₃)₂O using the G2 procedure as 792 kJ mol⁻¹.

The potential energy diagram relevant to the ion-molecule association reactions $H_3O^+ + C_2H_4$ and $CH_3^+ + CH_3OH$ incorporating our calculations is shown in Figure 2. The G2 energies of some of the ions and transition states on the $C_2H_7O^+$ surface are summarized in Table 3.

Discussion

The reaction chemistry summarized in Table 1 distinguishes clearly between the isomeric species, $C_2H_5OH_2^+$ and $(CH_3)_2$ -OH⁺, on the basis of the different proton affinities of C_2H_5OH and $(CH_3)_2O$. Both ions exhibited near collision rate reactions with CH₂CHCN (PA = 794 kJ mol⁻¹), but protonated ethanol, $C_2H_5OH_2^+$, yielded a 50% proton transfer product channel whereas protonated dimethyl ether, $(CH_3)_2OH^+$, yielded only adduct. Both ions underwent slower reactions with 2-fluorotoluene (PA = 782 kJ mol⁻¹), but whereas $C_2H_5OH_2^+$ yielded a 70% proton transfer product channel and a faster reaction, no proton transfer was found for $(CH_3)_2OH^+$. These findings are in accord with the established proton affinities of C_2H_5OH (PA = 788 kJ mol⁻¹) and $(CH_3)_2O$ (PA = 804 kJ mol⁻¹).

What is also evident from the experimental studies is that the association adduct, $H_3O^+ \cdot C_2H_4$, formed in reaction 4b is indistinguishable in our experiments from $C_2H_5OH_2^+$. The calculated G2 proton affinity of $(H_2O + C_2H_4)$ is 768 kJ mol⁻¹. Our choice of CH₃OH (PA = 761 kJ mol⁻¹) as a neutral reagent for H₃O⁺·C₂H₄ was influenced by this value. If the H₃O⁺·C₂H₄ association ion product is the electrostatic ion, C₂H₄···H···OH₂⁺, identified in the ab initio studies, then proton transfer to CH₃-OH might be expected. None was observed. Further, the rate coefficients and product distributions of the reactions of H₃O⁺·C₂H₄ with C₇H₇F and CH₂CHCN are identical (within the experimental uncertainty) with those of C₂H₅OH₂⁺ giving strong support to the identification of H₃O⁺·C₂H₄ as C₂H₅OH₂⁺. The transition state barrier between the two structures is only 27 kJ mol⁻¹ relative to C₂H₄·H₃O⁺ (Figure 2), and it is apparent that at the entrance level of H₃O⁺ + C₂H₄ there is ample energy to overcome this small barrier and sample the surface above the C₂H₅OH₂⁺ global minimum.

We conclude therefore that the experimental evidence supports the structure of the $H_3O^+ \cdot C_2H_4$ association adduct being $C_2H_5OH_2^+$. Although the accompanying paper of Matthews et al.¹² provides evidence for some fraction of the $C_2H_7O^+$ ion formed in the association reaction 4b being in the electrostatic form, some interconversion to $C_2H_5OH_2^+$ is possible. Our results from the product ratios of the two reagents studied (C₇H₇F and CH₂CHCN) do not allow us to state unequivocally that the electrostatic form is accessed. Two earlier studies also favor $C_2H_5OH_2^+$ as the structure of the $H_3O^+ \cdot C_2H_4$ adduct. Jarrold et al.⁶ found supporting evidence from CID studies. Herbst et al.¹⁹ compared the measured ternary reaction rate coefficient of reaction 4b with calculated values that were based on a designated structure of the $C_2H_7O^+$ product ion. They obtained satisfactory agreement between theory and experiment when they assumed an adduct structure of $C_2H_5OH_2^+$.

Conclusions

Proton transfer reactions can be used as a sensitive probe of structure.^{7–9} We have utilized ab initio calculations of the $C_2H_7O^+$ energy surface and experimental observations of the proton transfer reactivity of the $C_2H_7O^+$ isomers, $C_2H_5OH_2^+$ and $(CH_3)_2OH^+$, to identify the $H_3O^+\cdot C_2H_4$ product of reaction 4b as $C_2H_5OH_2^+$. Thus sources of C_2H_5OH in interstellar models utilizing the ion-molecule association reaction 2 remain valid although we note that the products of the subsequent ion-electron recombination reaction 3 have not yet been determined.

The observation of the endothermic proton transfer channel in reaction 4a ($C_2H_5^+ + H_2O$, $\Delta H^\circ = +10.5$ kJ mol⁻¹),¹³ which competes with formation of the $H_3O^+ \cdot C_2H_4$ adduct, shows that the exit channel from the ($H_3O^+ \cdot C_2H_4$)* complex to $C_2H_5^+ +$ H₂O is found before collisional stabilization can occur. In this work our measurement of the rate coefficient for endothermic proton transfer is 5.9×10^{-11} cm³ s⁻¹ at 0.35 Torr of helium. At 0.45 Torr of helium, McIntosh *et al.*¹¹ report a rate coefficient for proton transfer of 4.0×10^{-11} cm³ s⁻¹ and Bohme and Mackay¹⁰ report a value of 6.3×10^{-11} cm³ s⁻¹ in a hydrogen carrier gas. The slight variation in rate coefficient in these three measurements is close to the experimental uncertainty. We conclude that the proton transfer channel takes place on a time scale that is much shorter than the time between collisions, *viz.* <125 ns, and proceeds independently of complex stabilization. The branching ratio is therefore expected to vary with pressure because of the variation in the termolecular rate.

Acknowledgment. We thank the Marsden Fund for financial support.

References and Notes

(1) Irvine, W. M.; Goldsmith, P. F.; Hjalmarson, Å. In *Interstellar Processes*; Hollenbach, D. J., Thronson, H. A., Jr., Eds.; Dordrecht: Reidel, 1987; p 561.

(2) Turner, B. E. Astrophys. J., Suppl. Ser. 1991, 76, 617.

(3) Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J. Astrophys. J. 1995, 448, 232.

(4) Herbst, E.; Leung, C. M. Astrophys. J., Suppl. Ser. 1989, 69, 271.

(5) Herbst, E. Astrophys. J. 1987, 313, 867.

(6) Jarrold, M. F.; Kirchner, N. J.; Liu, S.; Bowers, M. T. J. Phys. Chem. 1986, 90, 78.

(7) Scott, G. B. I.; Fairley, D. A.; Freeman, C. G.; Maclagan, R. G. A. R.; McEwan, M. J. Int. J. Mass Spectrom. Ion Processes 1995, 149/50, 251.

(8) Fairley, D. A.; Scott, G. B. I.; Freeman, C. G.; Maclagan, R. G. A. R.; McEwan, M. J. J. Chem. Soc., Faraday Trans. **1996**, *92*, 1305.

(9) McEwan, M. J. In Advances in Gas Phase Ion Chemistry; Adams, N. G., Babcock, L. M., Eds.; JAI Press: Greenwich, CT, 1992; Vol. 1, p 1

(10) Bohme, D. K.; Mackay, G. I. J. Am. Chem. Soc. 1981, 103, 2173.

(11) McIntosh, B. J.; Adams, N. G.; Smith, D. Chem. Phys. Lett. 1988, 148, 142.

(12) Matthews, K. K.; Adams, N. G.; Fisher, N. D. J. Phys. Chem. A 1997, 101, 2841.

(13) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data **1988**, 17, Suppl. 1.

(14) Su, T.; Chesnavich, W. J. J. Chem. Phys. 1982, 76, 5183.

(15) Bouchoux, G.; Hoppilliard, Y. J. Am. Chem. Soc. **1990**, 112, 9110.

(16) Audier, H. E., Koyanagi, G. K., McMahon, T. B., Tholmann, D. J. Phys. Chem. **1996**, 100, 8220.

(17) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. **1991**, 94, 7221.

(18) Smith, B. J.; Radom, L. J. Am. Chem. Soc. 1993, 115, 4885.

(19) Herbst, E.; Smith, D.; Adams, N. G.; McIntosh, B. J. J. Chem. Soc., Faraday Trans. 2 1989, 85, 1655.